Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao zbMATH Openarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
zbMATH Open
Article
Data sources: zbMATH Open
SIAM Journal on Computing
Article . 1998 . Peer-reviewed
Data sources: Crossref
DBLP
Article
Data sources: DBLP
versions View all 3 versions
addClaim

Planar Integer Linear Programming is NC Equivalent to Euclidean GCD

Planar integer linear programming is NC equivalent to Euclidean GCD
Authors: David Shallcross; Victor Y. Pan; Yu Lin-Kriz;

Planar Integer Linear Programming is NC Equivalent to Euclidean GCD

Abstract

Summary: It is not known if planar integer linear programming is P-complete or if it is in NC, and the same can be said about the computation of the remainder sequence of the Euclidean algorithm applied to two integers. However, both computations are NC equivalent. The latter computational problem was reduced in NC to the former one by \textit{X. Deng} [Mathematical Programming: Complexity and Application, Ph.D. dissertation, Stanford University, Stanford, CA, 1989; Proc. ACM Symp. on Parallel Algorithms and Architectures, 110-116 (1989)]. We now prove the converse NC-reduction.

Keywords

Complexity of computation (including implicit computational complexity), greatest common divisor, Complexity classes (hierarchies, relations among complexity classes, etc.), Distributed algorithms, parallel computational complexity, Euclidean algorithm, integer linear programming

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!