
handle: 11449/171840
This paper presents a comprehensive mathematical model to solve the restoration problem in balanced radial distribution systems. The restoration problem, originally modeled as mixed integer nonlinear programming, is transformed into a mixed integer second-order cone programming problem, which can be solved efficiently using several commercial solvers based on the efficient optimization technique family branch and bound. The proposed mathematical model considers several objectives in a single objective function, using parameters to preserve the hierarchy of the different objectives: 1) maximizing the satisfaction of the demand, 2) minimizing the number of switch operations, 3) prioritizing the automatic switch operation rather than a manual one, and 4) prioritizing especial loads. General and specialized tests were carried out on a 53-node test system, and the results were compared with other previously proposed algorithms. Results show that the mathematical model is robust, efficient, flexible, and presents excellent performance in finding optimal solutions.
000, 006, Distribution system optimization, restoration problem, mixed integer second-order cone programming
000, 006, Distribution system optimization, restoration problem, mixed integer second-order cone programming
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 102 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 1% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 1% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 1% |
