
Article history: Received 29 April 2019 Accepted 15 May 2019 Print 25 June 2019 The solvent sublation technique was applied to remove water-soluble dyes from aqueous solutions. The aim of this work is computer simulation of the solvent sublation process in prediction the amount of removed dyes. In this study, mathematical statistic methods were used to define the process variables that have the real impact on the solvent sublation process. The STAR system mathematical tools were used to find a proper model that govern the change of dye residual concentration over time, as well as to carry out parametric identification. The simulation results show that the models have a good performance in the simulation and prediction of the cationic and anionic dyes removal from aqueous solutions. The results can be used to optimize the solvent sublation process as a technique of wastewater treatment.
dye, waste water, solvent sublation, dye; simulation; solvent sublation; waste water, математичне моделювання, simulation, барвник; математичне моделювання; стічні води; флотоекстракція, краситель; математическое моделирование; сточные воды; флотоэкстракция, стічні води, флотоекстракція, флотоэкстракция, краситель, сточные воды, барвник, математическое моделирование
dye, waste water, solvent sublation, dye; simulation; solvent sublation; waste water, математичне моделювання, simulation, барвник; математичне моделювання; стічні води; флотоекстракція, краситель; математическое моделирование; сточные воды; флотоэкстракция, стічні води, флотоекстракція, флотоэкстракция, краситель, сточные воды, барвник, математическое моделирование
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
