
arXiv: 2110.02014
A genetic programming (GP) variant called traceless genetic programming (TGP) is proposed in this paper. TGP is a hybrid method combining a technique for building individuals and a technique for representing individuals. The main difference between TGP and other GP techniques is that TGP does not explicitly store the evolved computer programs. Two genetic operators are used in conjunction with TGP: crossover and insertion. TGP is applied for evolving digital circuits for the even-parity problem. Numerical experiments show that TGP outperforms standard GP with several orders of magnitude.
7 Figures, 3 Tables
FOS: Computer and information sciences, Artificial Intelligence (cs.AI), Computer Science - Artificial Intelligence, Computer Science - Neural and Evolutionary Computing, Neural and Evolutionary Computing (cs.NE)
FOS: Computer and information sciences, Artificial Intelligence (cs.AI), Computer Science - Artificial Intelligence, Computer Science - Neural and Evolutionary Computing, Neural and Evolutionary Computing (cs.NE)
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 5 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
