Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Applied Soft Computi...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Applied Soft Computing
Article . 2019 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Ensemble of multi-objective metaheuristic algorithms for multi-objective unconstrained binary quadratic programming problem

Authors: Ying Zhou; Lingjing Kong; Ziyan Wu; Shaopeng Liu; Yiqiao Cai; Ye Liu;

Ensemble of multi-objective metaheuristic algorithms for multi-objective unconstrained binary quadratic programming problem

Abstract

Abstract Metaheuristics have been widely utilized for solving NP-hard optimization problems. However, these algorithms usually perform differently from one problem to another, i.e., one may be effective on a problem but performs badly on another problem. Therefore, it is difficult to choose the best algorithm in advance for a given problem. In contrast to selecting the best algorithm for a problem, selection hyper-heuristics aim at performing well on a set of problems (instances). This paper proposes a selection hyper-heuristic based algorithm for multi-objective optimization problems. In the proposed algorithm, multiple metaheuristics exhibiting different search behaviors are managed and controlled as low-level metaheuristics in an algorithm pool, and the most appropriate metaheuristic is selected by means of a performance indicator at each search stage. To assess the performance of the proposed algorithm, an implementation of the algorithm containing four metaheuristics is proposed and tested for solving multi-objective unconstrained binary quadratic programming problem. Experimental results on 50 benchmark instances show that the proposed algorithm can provide better overall performance than single metaheuristics, which demonstrates the effectiveness of the proposed algorithm.

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    9
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
9
Top 10%
Average
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!