Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ arXiv.org e-Print Ar...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ACM Transactions on Information Systems
Article . 2025 . Peer-reviewed
Data sources: Crossref
https://dx.doi.org/10.48550/ar...
Article . 2024
License: CC BY
Data sources: Datacite
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Position-aware Graph Transformer for Recommendation

Authors: Jiajia Chen; Jiancan Wu; Jiawei Chen; Chongming Gao; Yong Li; Xiang Wang;

Position-aware Graph Transformer for Recommendation

Abstract

Collaborative recommendation fundamentally involves learning high-quality user and item representations from interaction data. Recently, graph convolution networks (GCNs) have advanced the field by utilizing high-order connectivity patterns in interaction graphs, as evidenced by state-of-the-art methods like PinSage and LightGCN. However, one key limitation has not been well addressed in existing solutions: capturing long-range collaborative filtering signals, which are crucial for modeling user preference. In this work, we propose a new graph transformer (GT) framework— Position-aware Graph Transformer for Recommendation (PGTR), which combines the global modeling capability of Transformer blocks with the local neighborhood feature extraction of GCNs. The key insight is to explicitly incorporate node position and structure information from the user-item interaction graph into GT architecture via several purpose-designed positional encodings. The long-range collaborative signals from the Transformer block are then combined linearly with the local neighborhood features from the GCN backbone to enhance node embeddings for final recommendations. Empirical studies demonstrate the effectiveness of the proposed PGTR method when implemented on various GCN-based backbones across four real-world datasets and the robustness against interaction sparsity as well as noise. Our implementations are available in GitHub: https://github.com/MEICRS/PGTR .

Related Organizations
Keywords

FOS: Computer and information sciences, Information Retrieval (cs.IR), Computer Science - Information Retrieval

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green