Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao https://doi.org/10.1...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
https://doi.org/10.1007/978-3-...
Part of book or chapter of book . 2020 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Impromptu Rendezvous Based Multi-threaded Algorithm for Shortest Lagrangian Path Problem on Road Networks

Authors: Kartik Vishwakarma; Venkata M. V. Gunturi;

Impromptu Rendezvous Based Multi-threaded Algorithm for Shortest Lagrangian Path Problem on Road Networks

Abstract

Input to the shortest lagrangian path (SLP) problem consists of the following: (a) road network dataset (modeled as a time-varying graph to capture its temporal variation in traffic), (b) a source-destination pair and, (c) a departure-time (\(t_{dep}\)). Given the input, the goal of the SLP problem is to determine a fastest path between the source and destination for the departure-time \(t_{dep}\) (at the source). The SLP problem has value addition potential in the domain of urban navigation. SLP problem has been studied extensively in the research literature. However, almost all of the proposed algorithms are essentially serial in nature. Thus, they fail to take full advantage of the increasingly available multi-core (and multi-processor) systems. However, developing parallel algorithms for the SLP problem is non-trivial. This is because SLP problem requires us to follow Lagrangian reference frame while evaluating the cost of a candidate path. In other words, we need to relax an edge (whose cost varies with time) only for the time at which the candidate path (from source) arrives at the head node of the edge. Otherwise, we would generate meaningless labels for nodes. This constraint precludes use of any label correcting based approaches (e.g., parallel version of Delta-Stepping at its variants) as they do not relax edges along candidate paths. Lagrangian reference frame can be implemented in label setting based techniques, however, they are hard to parallelize. In this paper, we propose a novel multi-threaded label setting algorithm called IMRESS which follows Lagrangian reference frame. We evaluate IMRESS both analytically and experimentally. We also experimentally compare IMRESS against related work to show its superior performance.

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Average
Average
Average
Related to Research communities
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!