Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Wavelet transform and adaptive arithmetic coding techniques for EEG lossy compression

Authors: Binh Nguyen; Dang Nguyen; Wanli Ma; Dat Tran;

Wavelet transform and adaptive arithmetic coding techniques for EEG lossy compression

Abstract

Electroencephalogram (EEG) has been widely used in diagnosing brain-related diseases, brain-computer interface applications, and user authentication and identification in security systems. Large EEG databases have been built and therefore, an effective EEG compression technique is necessary to reduce data for transmitting, processing and storing. In this paper, we propose an EEG lossy compression scheme in which EEG signals are undergoing a Wavelet Transform operation, followed by Quantisation and Thresholding, before being coded by Adaptive Arithmetic Coder. Our experiments are performed on a large set of EEG signals taken from two public databases and the results show that the proposed compression technique gives better performance than current techniques.

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    12
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
12
Average
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!