
The interactive evolutionary multi-objective optimization (IEMO) algorithms aim to learn and utilize the preference information from the decision maker (DM) during the optimization process to guide the search towards preferred solutions. In this paper, we are devoted to figuring out the effects of interaction patterns, DM calls, preference changes, and DM inconsistencies on the quality of the solutions generated by the IEMO algorithms. The investigation is done in the context of I-MOEA/D-PLVF algorithm, a recently proposed interactive optimization algorithm based on MOEA/D.The experimental results indicate that different interaction patterns and the number of DM calls do result in significant impacts on the quality of the obtained solutions generated by the IEMO algorithm used in our experiments. Meanwhile, preference changes and DM inconsistencies in the process of interactions will impose irreversibly negative effects on obtained solutions.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 4 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
