Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao IEEE Transactions on...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
IEEE Transactions on Neural Networks and Learning Systems
Article . 2023 . Peer-reviewed
License: IEEE Copyright
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Data-Driven Finite-Horizon H ∞ Tracking Control With Event-Triggered Mechanism for the Continuous-Time Nonlinear Systems

Authors: Huaguang Zhang; Zhongyang Ming; Yuqing Yan; Wei Wang;

Data-Driven Finite-Horizon H ∞ Tracking Control With Event-Triggered Mechanism for the Continuous-Time Nonlinear Systems

Abstract

In this article, the neural network (NN)-based adaptive dynamic programming (ADP) event-triggered control method is presented to obtain the near-optimal control policy for the model-free finite-horizon H∞ optimal tracking control problem with constrained control input. First, using available input-output data, a data-driven model is established by a recurrent NN (RNN) to reconstruct the unknown system. Then, an augmented system with event-triggered mechanism is obtained by a tracking error system and a command generator. We present a novel event-triggering condition without Zeno behavior. On this basis, the relationship between event-triggered Hamilton-Jacobi-Isaacs (HJI) equation and time-triggered HJI equation is given in Theorem 3. Since the solution of the HJI equation is time-dependent for the augmented system, the time-dependent activation functions of NNs are considered. Moreover, an extra error is incorporated to satisfy the terminal constraints of cost function. This adaptive control pattern finds, in real time, approximations of the optimal value while also ensuring the uniform ultimate boundedness of the closed-loop system. Finally, the effectiveness of the proposed near-optimal control pattern is verified by two simulation examples.

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    28
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
28
Top 10%
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!