
In dual‐rate rational systems, some output data are missing (unmeasurable) to make the traditional recursive least squares (RLS) parameter estimation algorithms invalid. In order to overcome this difficulty, this study develops a bias compensation RLS algorithm for estimating the missing outputs and then the model parameters. The algorithm based on auxiliary model and particle filter has four steps: (i) to establish an auxiliary model to estimate unmeasurable outputs, (ii) to compensate bias induced by correlated noise, (iii) to add a filter to improve estimation accuracy of the unmeasurable outputs and (iv) to obtain an unbiased parameter estimation. Three examples are selected for simulation demonstrations to give further guarantees on the usefulness of the proposed algorithms. The comparative studies show that the bias compensation RLS is more effective for such systems with dual‐rate input and output data.
Engineering Modelling and Simulation Research Group, system identification, rational model, parameter estimation
Engineering Modelling and Simulation Research Group, system identification, rational model, parameter estimation
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 8 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
