Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Effects of parallel distributed implementation on the search performance of Pittsburgh-style genetics-based machine learning algorithms

Authors: Yusuke Nojima; Hisao Ishibuchi;

Effects of parallel distributed implementation on the search performance of Pittsburgh-style genetics-based machine learning algorithms

Abstract

Pittsburgh-style genetics-based machine learning (GBML) algorithms have strong search ability for obtaining rule-based classifiers. However, when we apply them to data mining from large data, we need huge computation time for fitness evaluation. In our previous studies, we have proposed parallel distributed implementation of fuzzy GBML for fuzzy classifier design from large data. The basic idea of our parallel distributed implementation is to divide not only a population but also a training data set into N sub-populations and N training data subsets, respectively. A pair of a sub-population and a training data subset is assigned to each of N CPU cores in a workstation or a cluster. This dual division strategy achieved a quadratic speedup (i.e., N2 times faster than the use of a single CPU core) while maintaining the generalization ability on test data. In this paper, we apply our parallel distributed implementation to GAssist which is a non-fuzzy Pittsburgh-style GBML algorithm. We examine the effects of the number of divisions on the search ability comparing with the parallel distributed fuzzy GBML.

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!