Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ BioMedInformaticsarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
BioMedInformatics
Article . 2023 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
BioMedInformatics
Article . 2023
Data sources: DOAJ
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Chest X-ray Abnormality Detection by Using Artificial Intelligence: A Single-Site Retrospective Study of Deep Learning Model Performance

Authors: Daniel Kvak; Anna Chromcová; Marek Biroš; Robert Hrubý; Karolína Kvaková; Marija Pajdaković; Petra Ovesná;

Chest X-ray Abnormality Detection by Using Artificial Intelligence: A Single-Site Retrospective Study of Deep Learning Model Performance

Abstract

Chest X-ray (CXR) is one of the most common radiological examinations for both nonemergent and emergent clinical indications, but human error or lack of prioritization of patients can hinder timely interpretation. Deep learning (DL) algorithms have proven to be useful in the assessment of various abnormalities including tuberculosis, lung parenchymal lesions, or pneumothorax. The deep learning–based automatic detection algorithm (DLAD) was developed to detect visual patterns on CXR for 12 preselected findings. To evaluate the proposed system, we designed a single-site retrospective study comparing the DL algorithm with the performance of five differently experienced radiologists. On the assessed dataset (n = 127) collected from the municipal hospital in the Czech Republic, DLAD achieved a sensitivity (Se) of 0.925 and specificity (Sp) of 0.644, compared to bootstrapped radiologists’ Se of 0.661 and Sp of 0.803, respectively, with statistically significant difference. The negative likelihood ratio (NLR) of the proposed software (0.12 (0.04–0.32)) was significantly lower than radiologists’ assessment (0.42 (0.4–0.43), p < 0.0001). No critical findings were missed by the software.

Related Organizations
Keywords

patient prioritization, Computer applications to medicine. Medical informatics, R858-859.7, deep learning, artificial intelligence; computer-aided detection; deep learning; chest X-ray; patient prioritization, Neurosciences. Biological psychiatry. Neuropsychiatry, artificial intelligence, chest X-ray, computer-aided detection, RC321-571

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    8
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
8
Top 10%
Average
Top 10%
gold