Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Environmental Scienc...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Environmental Science and Pollution Research
Article . 2024 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PubMed Central
Other literature type . 2024
License: CC BY
Data sources: PubMed Central
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Investigations of airborne tire and brake wear particles using a novel vehicle design

Authors: Löber, Manuel; Bondorf, Linda; Grein, Tobias; Schripp, Tobias; Reiland, Sven; Wieser, Steffen; Epple, Fabius; +1 Authors

Investigations of airborne tire and brake wear particles using a novel vehicle design

Abstract

AbstractNon-exhaust emissions have become an increasingly important issue as their levels continue to rise and the health effects of particulate matter (PM) are more widely discussed. To address this issue, a vehicle demonstrator with integrated emission reduction of tires and brakes was developed as part of the Zero Emission Drive Unit Generation-1 (ZEDU-1) project. This novel concept includes the removal of tire road wear particles (TRWP) with a strong ventilation/filtering system and an enclosed multi-disk brake, making it a suitable tool for the investigation of non-exhaust emissions. Particle number (PN) and particle size distribution (PSD) measurements down to 2.5 nm were performed on a chassis dynamometer and on a test track. Due to the low background concentrations on the chassis dynamometer, it is possible to distinguish between tire and brake wear and to characterize even a small number of particle emissions. It could be shown that about 30 % less particles are emitted by the vehicle, when using the novel multi-disk brake instead of the conventional brake. The highest TRWP emissions were collected during acceleration and harsh braking. Characterization of the collected particles using scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDS) revealed diverse particle shapes and differences between particles generated on the dynamometer and on a test track. Graphical Abstract

Related Organizations
Keywords

Air Pollutants, Non-exhaust emissions, Microplastic, Energy-dispersive X-ray spectroscopy, Tire road wear particles, Urban air quality ; Energy-dispersive X-ray spectroscopy ; Tire road wear particles ; Particulate Matter/analysis [MeSH] ; Non-exhaust emissions ; Tire wear ; Microplastic ; Ultrafine particles ; Particle Size [MeSH] ; Air Pollutants/analysis [MeSH] ; Vehicle Emissions/analysis [MeSH] ; Scanning electron microscopy ; Research Article ; Environmental Monitoring/methods [MeSH], Ultrafine particles, Tire wear, Urban air quality, Particulate Matter, Particle Size, Scanning electron microscopy, Research Article, Environmental Monitoring, Vehicle Emissions

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    2
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
2
Top 10%
Average
Average
Green
hybrid