Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Сучасний стан науков...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

RESEARCH OF ACID TRANSACTION IMPLEMENTATION METHODS FOR DISTRIBUTED DATABASES USING REPLICATION TECHNOLOGY

Authors: Oksana Mazurova; Artem Naboka; Mariya Shirokopetleva;

RESEARCH OF ACID TRANSACTION IMPLEMENTATION METHODS FOR DISTRIBUTED DATABASES USING REPLICATION TECHNOLOGY

Abstract

Today, databases are an integral part of most modern applications designed to store large amounts of data and to request from many users. To solve business problems in such conditions, databases are scaled, often horizontally on several physical servers using replication technology. At the same time, many business operations require the implementation of transactional compliance with ACID properties. For relational databases that traditionally support ACID transactions, horizontal scaling is not always effective due to the limitations of the relational model itself. Therefore, there is an applied problem of efficient implementation of ACID transactions for horizontally distributed databases. The subject matter of the study is the methods of implementing ACID transactions in distributed databases, created by replication technology. The goal of the work is to increase the efficiency of ACID transaction implementation for horizontally distributed databases. The work is devoted to solving the following tasks: analysis and selection of the most relevant methods of implementation of distributed ACID transactions; planning and experimental research of methods for implementing ACID transactions by using of NoSQL DBMS MongoDB and NewSQL DBMS VoltDB as an example; measurements of metrics of productivity of use of these methods and formation of the recommendation concerning their effective use. The following methods are used: system analysis; relational databases design; methods for evaluating database performance. The following results were obtained: experimental measurements of the execution time of typical distributed transactions for the subject area of e-commerce, as well as measurements of the number of resources required for their execution; revealed trends in the performance of such transactions, formed recommendations for the methods studied. The obtained results allowed to make functions of dependence of the considered metrics on loading parameters. Conclusions: the strengths and weaknesses of the implementation of distributed ACID transactions using MongoDB and VoltDB were identified. Practical recommendations for the effective use of these systems for different types of applications, taking into account the resources consumed and the types of requests.

Keywords

NewSQL, розподілена база даних, transaction, транзакція, транзакция, распределенная база данных, TA177.4-185, продуктивність, VoltDB, NEWSQL, MongoDB, Engineering economy, distributed database, ACID, производительность, NOSQL, performance

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
gold