Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Advanced Engineering...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Advanced Engineering Research
Article . 2022
Data sources: DOAJ
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Evaluation of Pavement Condition Deterioration Using Artificial Intelligence Models

Authors: M. M. M. Elshamy; A. N. Tiraturyan; E. V. Uglova; M. Z. Elgendy;

Evaluation of Pavement Condition Deterioration Using Artificial Intelligence Models

Abstract

Introduction. One of the most significant tasks facing road experts is to maintain the transport network in good condition. The process of selecting an appropriate approach to providing such condition is quite complex since it requires considering many parameters, such as the existing condition of the pavement, road category, weather conditions, traffic volume, etc. Recently, the rising trend of digitization in the industry has contributed to the use of artificial intelligence to address problems in several fields, including the bodies in charge of operational control over the status of roadways. Within the context of any control system, the main task of the control system is to carry out reliable forecasting of the operational state of the road in the medium and long term.Materials and Methods. This study investigated the possibility of using artificial neural networks to assess existing pavement characteristics and their potential application in developing road maintenance strategies. A back-propagation neural network was implemented, trained using data from 1,614 investigated sections of the M4 «DON» highway in the road network of the Russian Federation in the period from 2014 to 2018. Several models were developed and trained using the MATLAB application, each with a different number of neurons in the hidden layers.Results. The results of the models showed a convergence between the inferred paving state values and the actual values, as the multiple correlation coefficient (R2) values exceeded 92 % for most of the models during all learning stages.Discussion and Conclusions. The findings suggest that public road authorities may utilize the established models to choose the best road maintenance strategy and assign the most efficient steps to restore road bearing capacity and operation.

Related Organizations
Keywords

pavement management system, falling weight deflectometer test, TA401-492, pavement maintenance, Materials of engineering and construction. Mechanics of materials, artificial neural network, back-propagation algorithm

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    3
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
3
Top 10%
Average
Average
gold