Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Oncologyarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Oncology
Article . 2022 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Lung Cancer Nodules Detection via an Adaptive Boosting Algorithm Based on Self-Normalized Multiview Convolutional Neural Network

Authors: Adeel Khan; Irfan Tariq; Haroon Khan; Sifat Ullah Khan; Nongyue He; Li Zhiyang; Faisal Raza;

Lung Cancer Nodules Detection via an Adaptive Boosting Algorithm Based on Self-Normalized Multiview Convolutional Neural Network

Abstract

Lung cancer is the deadliest cancer killing almost 1.8 million people in 2020. The new cases are expanding alarmingly. Early lung cancer manifests itself in the form of nodules in the lungs. One of the most widely used techniques for both lung cancer early and noninvasive diagnosis is computed tomography (CT). However, the intensive workload of radiologists to read a large number of scans for nodules detection gives rise to issues like false detection and missed detection. To overcome these issues, we proposed an innovative strategy titled adaptive boosting self-normalized multiview convolution neural network (AdaBoost-SNMV-CNN) for lung cancer nodules detection across CT scans. In AdaBoost-SNMV-CNN, MV-CNN function as a baseline learner while the scaled exponential linear unit (SELU) activation function normalizes the layers by considering their neighbors' information and a special drop-out technique (α-dropout). The proposed method was trained and tested using the widely Lung Image Database Consortium and Image Database Resource Initiative (LIDC-IDRI) and Early Lung Cancer Action Program (ELCAP) datasets. AdaBoost-SNMV-CNN achieved an accuracy of 92%, sensitivity of 93%, and specificity of 92% for lung nodules detection on the LIDC-IDRI dataset. Meanwhile, on the ELCAP dataset, the accuracy for detecting lung nodules was 99%, sensitivity 100%, and specificity 98%. AdaBoost-SNMV-CNN outperformed the majority of the model in accuracy, sensitivity, and specificity. The multiviews confer the model’s good generalization and learning ability for diverse features of lung nodules, the model architecture is simple, and has a minimal computational time of around 102 minutes. We believe that AdaBoost-SNMV-CNN has good accuracy for the detection of lung nodules and anticipate its potential application in the noninvasive clinical diagnosis of lung cancer. This model can be of good assistance to the radiologist and will be of interest to researchers involved in the designing and development of advanced systems for the detection of lung nodules to accomplish the goal of noninvasive diagnosis of lung cancer.

Related Organizations
Keywords

Research Article

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    23
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
23
Top 10%
Top 10%
Top 10%
Green
gold