Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ arXiv.org e-Print Ar...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
zbMATH Open
Article . 2025
Data sources: zbMATH Open
SIAM Journal on Numerical Analysis
Article . 2025 . Peer-reviewed
Data sources: Crossref
DBLP
Article
Data sources: DBLP
DBLP
Article
Data sources: DBLP
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

An Energy-Stable Parametric Finite Element Method for the Planar Willmore Flow

An energy-stable parametric finite element method for the planar Willmore flow
Authors: Weizhu Bao; Yifei Li 0007;

An Energy-Stable Parametric Finite Element Method for the Planar Willmore Flow

Abstract

We propose an energy-stable parametric finite element method (PFEM) for the planar Willmore flow and establish its unconditional energy stability of the full discretization scheme. The key lies in the introduction of two novel geometric identities to describe the planar Willmore flow: the first one involves the coupling of the outward unit normal vector $\boldsymbol{n}$ and the normal velocity $V$, and the second one concerns the time derivative of the mean curvature $\kappa$. Based on them, we derive a set of new geometric partial differential equations for the planar Willmore flow, leading to our new fully-discretized and unconditionally energy-stable PFEM. Our stability analysis is also based on the two new geometric identities. Extensive numerical experiments are provided to illustrate its efficiency and validate its unconditional energy stability.

Related Organizations
Keywords

geometric identity, parametric finite element method, Finite difference methods for initial value and initial-boundary value problems involving PDEs, Numerical computation of solutions to systems of equations, energy-stable, Nonlinear parabolic equations, Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs, Mathematics - Numerical Analysis, Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs, Stability and convergence of numerical methods for initial value and initial-boundary value problems involving PDEs, Global surface theory (convex surfaces à la A. D. Aleksandrov), Willmore flow

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green