Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Digital library (rep...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Solid State Phenomena
Article . 2022 . Peer-reviewed
License: Trans Tech Publications Copyright and Content Usage Policy
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Comparison the Preparation Methods of Powder Feedstock for Laser Powder Bed Fusion

Authors: Khimich, Margarita A.; Ibragimov, Egor; Chebodaeva, Valentina V.; Saprykin, Alexander A.; Saprykina, Natalia A.; Sharkeev, Yuriy P. 1950-;

Comparison the Preparation Methods of Powder Feedstock for Laser Powder Bed Fusion

Abstract

Four various methods of powder feedstock preparation for laser powder bed fusion are compared. Application of commercial spherical powder leads to the formation of single-phased state. Powder mechanically alloyed during 14 minutes in air atmosphere provides conditions for the formation of double-phased state with nonuniform distribution of components in the samples. Mechanical alloying in Ar-atmosphere during 30 minutes leads to the formation of double-phased state with more uniform distribution of components and precipitations of Cr2O3. Preliminary mechanical sieving of the powder allows to produce double-phased samples with nonuniform distribution of components comparable with that in samples produced from powder mechanically alloyed during 14 minutes in air atmosphere. Microhardness of all the studied samples produced from all the studied powders was comparable. All the proposed methods of powder feedstock preparation are applicable in laser powder bed fusion depending on the required properties, elemental and phase composition of the final product.

Keywords

аддитивное производство, лазерная сварка, механическая обработка

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Average
Average
Average
Green