Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Low-power high-accuracy seizure detection algorithms for neural implantable platforms

Authors: Khaled A. Helal; Ahmed Yasser Abo Elmkarem; Al-Moataz Bellah Refaat; Taha Shawky Kamel; Kareem Ayman Mohamed; Mohamed Mahmoud Kamal; Mohamed Mostafa Abdelrahman; +2 Authors

Low-power high-accuracy seizure detection algorithms for neural implantable platforms

Abstract

Neural interfaces are systems operating at the intersection of the nervous system and an internal or external device. Neuro-stimulator is one of the most important neural interfaces used to help those who experience epileptic seizures. To use this stimulator efficiently, seizure should be detected at the right time. Seizure detection is basically founded on digital signal processing by monitoring certain features of the intracranial electroencephalogram. Many of the previous researches are directed to study the detection efficacies using different systems, however, a few of them study the feasibility of implementing these systems over a computationally limited power implantable platforms. In this paper, five time-domain features and three wavelet-domain features are investigated. Following that, a high accuracy seizure detection algorithm is presented with efficient power consumption which makes it suitable for implantable neural systems. The experiment results show that the presented method achieves a sensitivity, specificity, and accuracy of 92.64%, 99.29%, and 99.16% respectively for long-term iEEG seizure detection. The area and power results are obtained from implementing the algorithms on Xilinx Spartan-6 XC6SLX45T FPGA.

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    7
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
7
Average
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!