Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Zurich Open Reposito...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
IEEE Transactions on Visualization and Computer Graphics
Article . 2023 . Peer-reviewed
License: IEEE Copyright
Data sources: Crossref
https://dx.doi.org/10.5167/uzh...
Other literature type . 2023
Data sources: Datacite
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

ManuKnowVis: How to Support Different User Groups in Contextualizing and Leveraging Knowledge Repositories

Authors: Eirich, Joscha; Jäckle, Dominik; Sedlmair, Michael; Wehner, Christoph; Schmid, Ute; Bernard, Jürgen; Schreck, Tobias;

ManuKnowVis: How to Support Different User Groups in Contextualizing and Leveraging Knowledge Repositories

Abstract

We present ManuKnowVis, the result of a design study, in which we contextualize data from multiple knowledge repositories of a manufacturing process for battery modules used in electric vehicles. In data-driven analyses of manufacturing data, we observed a discrepancy between two stakeholder groups involved in serial manufacturing processes: Knowledge providers (e.g., engineers) have domain knowledge about the manufacturing process but have difficulties in implementing data-driven analyses. Knowledge consumers (e.g., data scientists) have no first-hand domain knowledge but are highly skilled in performing data-driven analyses. ManuKnowVis bridges the gap between providers and consumers and enables the creation and completion of manufacturing knowledge. We contribute a multi-stakeholder design study, where we developed ManuKnowVis in three main iterations with consumers and providers from an automotive company. The iterative development led us to a multiple linked view tool, in which, on the one hand, providers can describe and connect individual entities (e.g., stations or produced parts) of the manufacturing process based on their domain knowledge. On the other hand, consumers can leverage this enhanced data to better understand complex domain problems, thus, performing data analyses more efficiently. As such, our approach directly impacts the success of data-driven analyses from manufacturing data. To demonstrate the usefulness of our approach, we carried out a case study with seven domain experts, which demonstrates how providers can externalize their knowledge and consumers can implement data-driven analyses more efficiently.

Keywords

1707 Computer Vision and Pattern Recognition, 10009 Department of Informatics, 11476 Digital Society Initiative, Computer Graphics and Computer, 000 Computer science, knowledge & systems, 1704 Computer Graphics and Computer-Aided Design, 1712 Software, Visual Analytics, Signal Processing, 1711 Signal Processing, Aided Design, Computer Vision and Pattern Recognition, Software, Interactive Visual Data Analysis

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Related to Research communities
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!