
Efficient cleanup of crude oil continues to be a global challenge owing to its inherent high viscosity, which makes it difficult to remove with conventional porous adsorbents. Here, a novel multifunctional aerogel was fabricated through directional freeze-drying, leveraging its photothermal properties and directional structure for the rapid cleanup of crude oil. The aerogel incorporates 2,2,6,6-tetramethyl-1-piperidinyloxy oxidized nanocellulose to enhance Ti3C2Tx (MXene) to construct functional networks, MXene/gold nanoparticles (MX/AuNPs) as photothermal absorbers, and methyltrimethoxysilane for hydrophobic coatings. After 30 compression-release cycles at 90% strain, the strain retention of the aerogel is 85.7%, indicating its mechanical super-elasticity. The as-prepared aerogel showed durable hydrophobicity (145°), high oil/organic solvent absorption capacity (45.7–85.6 g/g), and efficient photothermal conversion, rapidly attaining and sustaining 76 °C. Interestingly, for viscous crude oil that cannot be absorbed for a long time, the aerogel completed the absorption within 10 s after illumination, demonstrating an improved absorption ability of viscous crude oil. Furthermore, the obtained aerogel successfully achieved controlled and rapid light-driven motion, as well as long-lasting photothermal sterilization performance. This work presents a feasible strategy for developing multifunctional composite aerogels, addressing the increasing demands in crude oil separation applications.
MXene aerogel, Hydrophobicity, QD415-436, Crude oil adsorption, Photothermal conversion, Biochemistry, Nanocellulose
MXene aerogel, Hydrophobicity, QD415-436, Crude oil adsorption, Photothermal conversion, Biochemistry, Nanocellulose
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
