Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Medycyna Pracyarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Medycyna Pracy
Article
License: CC BY NC
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Medycyna Pracy
Article . 2021
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Medycyna Pracy
Article . 2021
Data sources: DOAJ
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Evaluation of exposure to nano-sized particles among transport and vehicle service workers

Authors: Stella Bujak-Pietrek; Urszula Mikołajczyk;

Evaluation of exposure to nano-sized particles among transport and vehicle service workers

Abstract

Exposure to fine and ultrafine particles from transport processes is a main consequence of emissions from engines, especially those with self-ignition. The particles released in these processes are a source of occupational and environmental particles exposure. The aim of this study was to assess the fine and nano-sized particles emission degree during work connected with transport and vehicle servicing.The tests were carried out at 3 workplaces of vehicles service and maintenance (a car repair workshop, a truck service hall, and a bus depot) during 1 work day in each of them. Measurements were performed using the following devices: DISCmini meters, GRIMM 1.109 optical counter and the DustTrak monitor. The number, surface area and mass concentration, and the number size distribution were analyzed.The mean number concentration (DISCmini) increased during the analyzed processes, ranging from 4×104 p/cm3 to 8×104 p/cm3, and the highest concentration was found in the car repair workshop. The particles mean diameters during the processes ranged 31-47 nm, depending on the process. An increase in the surface area concentration value was observed in correlation with the particles number, and its highest concentration (198 m2/cm3) was found during work in the car repair workshop. The number size distribution analysis (GRIMM 1.109) showed the maximum value of the number concentration for particles sized 60 nm. The mean mass concentrations increased during the tested processes by approx. 40-70%, as compared to the background.According to the measurement results, all the workplaces under study constituted a source of an increase in all analyzed parameters characterizing emissions of nano-sized particles. Such working environment conditions can be harmful to the exposed workers; therefore, at such workplaces solutions for minimizing workers' exposure, such as fume hoods or respiratory protection, should be used. Med Pr. 2021;72(5):489-500.

Keywords

particle number concentration, diesel engine exhaust, particle number size distribution, ultrafine particles, particle surface area concentration, Motor Vehicles, równowaga ciała, Humans, nanoparticles, Particulate Matter, Public aspects of medicine, RA1-1270, Particle Size, nanoparticles exposure, nanocząsteczki, postural balance, Environmental Monitoring, Vehicle Emissions

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Average
Average
Average
gold