
arXiv: 2406.18796
Quantum entanglement is a crucial resource in quantum information processing, and protecting it against noise poses a significant challenge. This paper introduces two strategies for preserving qutrit-qutrit entanglement in the presence of correlated amplitude damping (CAD) noise: weak measurement (WM) and environment-assisted measurement (EAM), both combined with quantum measurement reversal (QMR). Two prototypical classes of three-dimensional entangled states are examined. The findings demonstrate that while the WM+QMR method can partially retain entanglement, the EAM+QMR approach is more effective at protecting entanglement as well as enhancing success probabilities, particularly for specific qutrit-qutrit entangled states. Additionally, we thoroughly discuss the impact of correlation effects on entanglement protection and the enhancement of success probability. Our results provide valuable insights into defending high-dimensional entanglement from CAD noise, thus offering practical solutions for the advancement of quantum information technologies.
14 pages,, 6 figures, comments are welcome!
Quantum Physics, FOS: Physical sciences, Quantum Physics (quant-ph)
Quantum Physics, FOS: Physical sciences, Quantum Physics (quant-ph)
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 1 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
