Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ IEEE Accessarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
IEEE Access
Article . 2025 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
IEEE Access
Article . 2025
Data sources: DOAJ
https://dx.doi.org/10.48550/ar...
Article . 2025
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Empirical Evaluation and Scalability Analysis of Proof of Team Sprint (PoTS): Reward Fairness, Energy Efficiency, and System Stability

Authors: Naoki Yonezawa;

Empirical Evaluation and Scalability Analysis of Proof of Team Sprint (PoTS): Reward Fairness, Energy Efficiency, and System Stability

Abstract

This paper presents an empirical evaluation of the Proof of Team Sprint (PoTS) consensus algorithm, focusing on reward fairness, energy efficiency, system stability, and scalability. We conducted large-scale simulations comparing PoTS with conventional Proof of Work (PoW) across various team sizes and computational conditions. In PoW, the highest-performance node ranked first in all 100 trials, demonstrating extreme centralization. In contrast, PoTS reduced this dominance: the same node ranked first only 54 times, indicating fairer reward distribution. Statistical analysis showed that as team size increased, skewness and kurtosis of reward distributions decreased, confirming improved equity among participants. PoTS also demonstrated significant energy savings. The total active computation time followed a near $1/N$ scaling trend, reducing energy use by up to 64 times when team size was 64, while preserving consensus integrity. Repeated simulations showed stable reward distributions and system performance, affirming PoTS's robustness. Furthermore, the correlation between performance and reward peaked at 0.90 for team size 16, reflecting an optimal balance between fairness and meritocracy. Overall, PoTS offers a cooperative, energy-efficient alternative to PoW, mitigating centralization risks and promoting equitable participation. These findings validate PoTS as a sustainable and fair consensus mechanism suited for future blockchain systems.

Related Organizations
Keywords

consensus algorithm, FOS: Computer and information sciences, Blockchain, Computer Science - Distributed, Parallel, and Cluster Computing, proof of team sprint, Electrical engineering. Electronics. Nuclear engineering, Distributed, Parallel, and Cluster Computing (cs.DC), reward fairness, energy efficiency, system stability, TK1-9971

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green
gold
Related to Research communities