Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ IEEE Journal of Sele...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing
Article . 2025 . Peer-reviewed
License: CC BY NC ND
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Effective Land Use Classification Through Hybrid Transformer Using Remote Sensing Imagery

Authors: Muhammad Zia Ur Rehman; Syed Mohammed Shamsul Islam; Anwaar Ul-Haq; David Blake; Naeem Janjua;

Effective Land Use Classification Through Hybrid Transformer Using Remote Sensing Imagery

Abstract

Recent advances in deep learning for hyperspectral image classification have shown exceptional performance in resource management and environmental planning through land use classification. Despite these successes, challenges continue to persist in land use classification due to the complex topology of natural and man-made structures. The uneven distribution of land cover introduces spectral-spatial variability, causing inter- and intra-class similarity. To address this issue, this study adopts a hybrid approach that combines convolutional neural networks and a transformer model. The technique comprises three key components: a spectral-spatial convolutional module (SSCM), a spatial attention module (SAM), and a transformer module (TM). Each component facilitates the others in the process of classification. SSCM is used to extract shallow features with the help of dilated convolutional layers, while the SAM enhances spatial features for further processing. In addition, a TM with a local neighborhood attention mechanism is employed to extract local semantic information. Several experiments conducted on the Indian Pines and Pavia University hyperspectral datasets validate the performance of the proposed technique, demonstrating higher classification accuracy compared to recent methods in the literature. The technique achieves average accuracies of 97.24% and 99.33% on the Indian Pines and Pavia University datasets, respectively, thus demonstrating its effectiveness for land resource management and environmental planning.

Keywords

550, QC801-809, Geophysics. Cosmic physics, deep learning, 600, transformers, Hyperspectral Imaging, Remote sensing, Classification, classification hyperspectral imaging, Remote Sensing, Ocean engineering, Deep Learning, Transformers, Natural Resources and Conservation, spatial attention, Physical Sciences and Mathematics, TC1501-1800, Environmental Sciences, Spatial Attention

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Average
Average
Average
Green
gold