
In this paper, we study a supply chain problem where a whole seller/producer distributes goods among different retailers. Such problems are always faces with uncertainty with input data and we have to use various techniques to handle the uncertainty. The proposed model of this paper considers different input parameters such as demand, capacity and cost in trapezoid fuzzy forms and using two ranking methods, we handle the uncertainty. The results of the proposed model of this paper have been compared with the crisp and other existing fuzzy techniques using some randomly generated data. The preliminary results indicate that the proposed models of this paper provides better values for the objective function and do not increase the complexity of the resulted problem.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
