Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ DROPS - Dagstuhl Res...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://doi.org/10.4230/lipics...
Article . 2022
License: CC BY
Data sources: Sygma
https://dx.doi.org/10.48550/ar...
Article . 2022
License: CC BY SA
Data sources: Datacite
DBLP
Conference object
Data sources: DBLP
DBLP
Article
Data sources: DBLP
versions View all 6 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Faster Knapsack Algorithms via Bounded Monotone Min-Plus-Convolution

Authors: Bringmann, Karl; Cassis, Alejandro;

Faster Knapsack Algorithms via Bounded Monotone Min-Plus-Convolution

Abstract

We present new exact and approximation algorithms for 0-1-Knapsack and Unbounded Knapsack: * Exact Algorithm for 0-1-Knapsack: 0-1-Knapsack has known algorithms running in time $\widetilde{O}(n + \min\{n OPT, n W, OPT^2, W^2\})$, where $n$ is the number of items, $W$ is the weight budget, and $OPT$ is the optimal profit. We present an algorithm running in time $\widetilde{O}(n + (W + OPT)^{1.5})$. This improves the running time in case $n,W,OPT$ are roughly equal. * Exact Algorithm for Unbounded Knapsack: Unbounded Knapsack has known algorithms running in time $\widetilde{O}(n + \min\{n \cdot p_{\max}, n \cdot w_{\max}, p_{\max}^2, w_{\max}^2\})$ [Axiotis, Tzamos '19, Jansen, Rohwedder '19, Chan, He '20], where $n$ is the number of items, $w_{\max}$ is the largest weight of any item, and $p_{\max}$ is the largest profit of any item. We present an algorithm running in time $\widetilde{O}(n + (p_{\max} + w_{\max})^{1.5})$, giving a similar improvement as for 0-1-Knapsack. * Approximating Unbounded Knapsack with Resource Augmentation: Unbounded Knapsack has a known FPTAS with running time $\widetilde{O}(\min\{n/\varepsilon, n + 1/\varepsilon^2\})$ [Jansen, Kraft '18]. We study weak approximation algorithms, which approximate the optimal profit but are allowed to overshoot the weight constraint. We present the first approximation scheme for Unbounded Knapsack in this setting, achieving running time $\widetilde{O}(n + 1/\varepsilon^{1.5})$. Our algorithms can be seen as reductions to Min-Plus-Convolution on monotone sequences with bounded entries. These structured instances of Min-Plus-Convolution can be solved in time $O(n^{1.5})$ [Chi,Duan,Xie,Zhang '22] (in contrast to the conjectured $n^{2-o(1)}$ lower bound for the general case).

Shortened abstract. Appears at ICALP '22

Country
Germany
Keywords

Min-Plus Convolution, FOS: Computer and information sciences, Theory of computation → Design and analysis of algorithms, Approximation Schemes, Knapsack, 004, Fine-Grained Complexity, Computer Science - Data Structures and Algorithms, Data Structures and Algorithms (cs.DS), ddc: ddc:004

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green