
We show that probabilistic computable functions, i.e., those func- tions outputting distributions and computed by probabilistic Turing machines, can be characterized by a natural generalization of Church and Kleene’s partial recursive functions. The obtained algebra, following Leivant, can be restricted so as to capture the notion of a polytime sampleable distribution, a key concept in average-case complexity and cryptography.
Electronic computers. Computer science, QA75.5-76.95
Electronic computers. Computer science, QA75.5-76.95
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 2 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
