Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Mathematicsarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Mathematics
Article . 2022 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Mathematics
Article . 2022
Data sources: DOAJ
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Complete Balancing of the Six-Bar Mechanism Using Fully Cartesian Coordinates and Multiobjective Differential Evolution Optimization

Authors: María T. Orvañanos-Guerrero; Mario Acevedo; Claudia N. Sánchez; Daniel U. Campos-Delgado; Amir Aminzadeh Ghavifekr; Paolo Visconti; Ramiro Velázquez;

Complete Balancing of the Six-Bar Mechanism Using Fully Cartesian Coordinates and Multiobjective Differential Evolution Optimization

Abstract

The high-speed operation of unbalanced machines may cause vibrations that lead to noise, wear, and fatigue that will eventually limit their efficiency and operating life. To restrain such vibrations, a complete balancing must be performed. This paper presents the complete balancing optimization of a six-bar mechanism with the use of counterweights. A novel method based on fully Cartesian coordinates (FCC) is proposed to represent such a balanced mechanism. A multiobjective optimization problem was solved using the Differential Evolution (DE) algorithm to minimize the shaking force (ShF) and the shaking moment (ShM) and thus balance the system. The Pareto front is used to determine the best solutions according to three optimization criteria: only the ShF, only the ShM, and both the ShF and ShM. The dimensions of the counterweights are further fine-tuned with an analysis of their partial derivatives, volumes, and area–thickness relations. Numerical results show that the ShF and ShM can be reduced by 76.82% and 77.21%, respectively, when importance is given to either of them and by 45.69% and 46.81%, respectively, when equal importance is given to both. A comparison of these results with others previously reported in the literature shows that the use of FCC in conjunction with DE is a suitable methodology for the complete balancing of mechanisms.

Keywords

six-bar mechanism, dynamic balancing, differential evolution, six-bar mechanism, dynamic balancing, fully Cartesian coordinates, multiobjective optimization, differential evolution, Pareto front, QA1-939, multiobjective optimization, six-bar mechanism; dynamic balancing; fully Cartesian coordinates; multiobjective optimization; differential evolution; Pareto front, fully Cartesian coordinates, Pareto front, Mathematics

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    2
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
2
Average
Average
Average
gold