Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Complex & Intelligen...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Complex & Intelligent Systems
Article . 2024 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Complex & Intelligent Systems
Article . 2024
Data sources: DOAJ
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Two-stage many-objective evolutionary algorithm: enhanced dominance relations and control mechanisms for separated balance

Authors: Wei Li; Qilin Niliang; Lei Wang; Qiaoyong Jiang;

Two-stage many-objective evolutionary algorithm: enhanced dominance relations and control mechanisms for separated balance

Abstract

AbstractAlthough the multiobjective evolutionary algorithms (MOEAs) have been proved to bring promising prospects for solving multiobjective optimization problems (MOPs), the performance of the algorithm deteriorates sharply in high-dimensional objective space due to the weak selection pressure and the unregulated balance, which is caused by the increase of objective space dimension. Some current MOEAs with two-stage strategy (TS) strive to address above issues by dividing the evolutionary process into two independent stages, in which convergence and diversity are handled separately within successive generations of different stages. However, TS-MOEAs have some weaknesses, such as sensitivity to stage division, and incomplete separation of convergence and diversity. In this paper, TS/KW-MaOEA is proposed for solving many-objective optimization problems (MaOPs), which keeps TS as the central and equips a perfect control mechanism for separated balance. More specifically, TS/KW-MaOEA can automatically adjust the balance trend and provide appropriate selection pressure for MaOPs according to the Kondratiev wave (KW) search model and the objective space dimension. To verify the effectiveness of the proposed algorithm, a series of experiments are carried out against seven state-of-the-art many-objective optimization algorithms on 15 benchmark problems with up to 30 objectives. Experimental results indicate that the proposed algorithm is highly competitive against peer competitors.

Related Organizations
Keywords

Many-objective optimization, Diversity, Two-stage strategy, Evolutionary algorithm, Electronic computers. Computer science, QA75.5-76.95, Information technology, Convergence, T58.5-58.64

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Average
Average
Average
gold