Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Авіаційно-космічна т...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

ВЛИЯНИЕ ИЗГИБА ПЛУНЖЕРА НА ИЗМЕНЕНИЕ ОБЪЕМА В ЦИЛИНДРОВОЙ ПОЛОСТИ АВИАЦИОННОГО АКСИАЛЬНО-ПЛУНЖЕРНОГО НАСОСА

ВЛИЯНИЕ ИЗГИБА ПЛУНЖЕРА НА ИЗМЕНЕНИЕ ОБЪЕМА В ЦИЛИНДРОВОЙ ПОЛОСТИ АВИАЦИОННОГО АКСИАЛЬНО-ПЛУНЖЕРНОГО НАСОСА

Abstract

In this article, the task is to consider the effect of the piston bending in an axial- piston pump under the action of hydraulic force on the kinematics of the pump. The change in kinematics due to the elastic deformation of the piston is estimated by the axial displacement of the piston face. The study takes into account the bias of the plunger in the gap, the elastic bending deformation of the plunger, the contact deformation of the plunger and the cylinder block. The task is considered on three models: a rigid piston in a rigid cylinder block; deformable piston in a rigid cylinder block; deformable piston, block, shoe, and disk. The values of the displacement of the piston, caused by elastic forces and misalignment in the gap depending on its position were obtained for the first time as a result of the analysis. The problem is solved both analytically and numerically using the finite element method. In the analytical solution of the problem, the piston is represented as a beam supported by pin and roller at the points of contact of the piston with the walls of the cylinder block. The three-dimensional model of the pump is applied to solve the problem by the finite element method, the contact deformation of the piston and the block is considered. According to the simulation results, the displacement of the piston is obtained depending on the position of the piston. The results of modeling an analytical model are presented in the form of a smooth function, and the results of numerical simulation using the finite-element method obtained for several points are interpolated by a smooth function. The conclusions suggest that the greatest deformations are achieved in the piston located at the bottom dead center, and the gap between the piston and the sleeve and the overall stiffness of the contact parts have the greatest effect. The results of the work can be used to correct the geometrical parameters of a heavily loaded aviation axial-plunger pump to reduce flow and pressure pulsations caused by the kinematics of the pump.

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
gold
Related to Research communities