Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ arXiv.org e-Print Ar...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
https://doi.org/10.1109/nice61...
Article . 2024 . Peer-reviewed
License: STM Policy #29
Data sources: Crossref
https://dx.doi.org/10.48550/ar...
Article . 2024
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
https://dx.doi.org/10.5167/uzh...
Other literature type . 2024
Data sources: Datacite
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Text-to-Events: Synthetic Event Camera Streams from Conditional Text Input

Authors: Ott, Joachim; Wang, Zuowen; Liu, Shih-Chii;

Text-to-Events: Synthetic Event Camera Streams from Conditional Text Input

Abstract

Event cameras are advantageous for tasks that require vision sensors with low-latency and sparse output responses. However, the development of deep network algorithms using event cameras has been slow because of the lack of large labelled event camera datasets for network training. This paper reports a method for creating new labelled event datasets by using a text-to-X model, where X is one or multiple output modalities, in the case of this work, events. Our proposed text-to-events model produces synthetic event frames directly from text prompts. It uses an autoencoder which is trained to produce sparse event frames representing event camera outputs. By combining the pretrained autoencoder with a diffusion model architecture, the new text-to-events model is able to generate smooth synthetic event streams of moving objects. The autoencoder was first trained on an event camera dataset of diverse scenes. In the combined training with the diffusion model, the DVS gesture dataset was used. We demonstrate that the model can generate realistic event sequences of human gestures prompted by different text statements. The classification accuracy of the generated sequences, using a classifier trained on the real dataset, ranges between 42% to 92%, depending on the gesture group. The results demonstrate the capability of this method in synthesizing event datasets.

Keywords

FOS: Computer and information sciences, 2606 Control and Optimization, I.2.10, I.2.6; I.2.7; I.2.10, Computer Science - Artificial Intelligence, I.2.6, 1708 Hardware and Architecture, I.2.7, Computer Vision and Pattern Recognition (cs.CV), Computer Science - Computer Vision and Pattern Recognition, 68T99, 1702 Artificial Intelligence, Artificial Intelligence (cs.AI), 2808 Neurology, 570 Life sciences; biology, 10194 Institute of Neuroinformatics

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green