Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ IEEE Accessarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
IEEE Access
Article . 2025 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
IEEE Access
Article . 2025
Data sources: DOAJ
https://dx.doi.org/10.48550/ar...
Article . 2024
License: CC BY
Data sources: Datacite
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A Toolchain for Assisting Migration of Software Executables Towards Post-Quantum Cryptography

Authors: Norrathep Rattanavipanon; Jakapan Suaboot; Warodom Werapun;

A Toolchain for Assisting Migration of Software Executables Towards Post-Quantum Cryptography

Abstract

Quantum computing poses a significant global threat to today's security mechanisms. As a result, security experts and public sectors have issued guidelines to help organizations migrate their software to post-quantum cryptography (PQC). Despite these efforts, there is a lack of (semi-)automatic tools to support this transition especially when software is used and deployed as binary executables. To address this gap, in this work, we first propose a set of requirements necessary for a tool to detect quantum-vulnerable software executables. Following these requirements, we introduce QED: a toolchain for Quantum-vulnerable Executable Detection. QED uses a three-phase approach to identify quantum-vulnerable dependencies in a given set of executables, from file-level to API-level, and finally, precise identification of a static trace that triggers a quantum-vulnerable API. We evaluate QED on both a synthetic dataset with four cryptography libraries and a real-world dataset with over 200 software executables. The results demonstrate that: (1) QED discerns quantum-vulnerable from quantum-safe executables with 100% accuracy in the synthetic dataset; (2) QED is practical and scalable, completing analyses on average in less than 4 seconds per real-world executable; and (3) QED reduces the manual workload required by analysts to identify quantum-vulnerable executables in the real-world dataset by more than 90%. We hope that QED can become a crucial tool to facilitate the transition to PQC, particularly for small and medium-sized businesses with limited resources.

12 pages, 5 figures

Keywords

FOS: Computer and information sciences, software security, Computer Science - Cryptography and Security, Binary analysis, 68-04, post-quantum migration, Electrical engineering. Electronics. Nuclear engineering, Cryptography and Security (cs.CR), post-quantum cryptography, TK1-9971

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green
gold