
The use of code metrics allows software developers and project managers to evaluate various features of the software (to be built or already in existence), predict workload, determine software complexity and reliability, and quantify the quality of software systems being developed. Articles written in recent years have proposed various methods for solving this problem. However, there is still no very effective approach to measuring software complexity. This article provides a brief overview of existing software complexity metrics and proposes a new hybrid method for computing software complexity. The proposed hybrid method for evaluating software complexity combines the key features of the Halsted, Maccabe, and SLOC metrics and also allows for a more efficient assessment of complexity.
метрики складності, гібридний метод, software complexity, complexity metrics, Electronic computers. Computer science, hybrid method, QA75.5-76.95, складність програмного забезпечення, програмна інженерія, software engineering
метрики складності, гібридний метод, software complexity, complexity metrics, Electronic computers. Computer science, hybrid method, QA75.5-76.95, складність програмного забезпечення, програмна інженерія, software engineering
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 1 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
