
McMillan has presented a deadlock detection method for Petri nets based on finite complete prefixes (i.e. net unfoldings). The approach transforms the PSPACE-complete deadlock detection problem for a 1-safe Petri net into a potentially exponentially larger NP-complete problem of deadlock detection for a finite complete prefix. McMillan devised a branch-and-bound algorithm for deadlock detection in prefixes. Recently, Melzer and Römer have presented another approach, which is based on solving mixed integer programming problems. In this work it is shown that instead of using mixed integer programming, a constraint-based logic programming framework can be employed, and a linear-size translation from deadlock detection in prefixes into the problem of finding a stable model of a logic program is presented. As a side result also such a translation for solving the reachability problem is devised. Correctness proofs of both the translations are presented. Experimental results are given from an implementation combining the prefix generator of the PEP-tool, the translation, and an implementation of a constraint-based logic programming framework, the smodels system. The experiments show the proposed approach to be quite competitive, when compared to the approaches of McMillan and Melzer/Römer.
Models and methods for concurrent and distributed computing (process algebras, bisimulation, transition nets, etc.), Semantics in the theory of computing, Petri nets, Logic programming
Models and methods for concurrent and distributed computing (process algebras, bisimulation, transition nets, etc.), Semantics in the theory of computing, Petri nets, Logic programming
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 31 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
