Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao https://doi.org/10.1...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Experience of parallelizing cryo-EM 3D reconstruction on a CPU-GPU heterogeneous system

Authors: Linchuan Li; Xingjian Li; Guangming Tan; Mingyu Chen; Peiheng Zhang;

Experience of parallelizing cryo-EM 3D reconstruction on a CPU-GPU heterogeneous system

Abstract

Heterogeneous architecture is becoming an important way to build a massive parallel computer system, i.e. the CPU-GPU heterogeneous systems ranked in Top500 list. However, it is a challenge to efficiently utilize massive parallelism of both applications and architectures on such heterogeneous systems. In this paper we present a practice on how to exploit and orchestrate parallelism at algorithm level to take advantage of underlying parallelism at architecture level. A potential Petaflops application -- cryo-EM 3D reconstruction is selected as an example. We exploit all possible parallelism in cryo-EM 3D reconstruction, and leverage a self-adaptive dynamic scheduling algorithm to create a proper parallelism mapping between the application and architecture. The parallelized programs are evaluated on a subsystem of Dawning Nebulae supercomputer, whose node is composed of two Intel six-core Xeon CPUs and one Nvidia Fermi GPU. The experiment confirms that hierarchical parallelism is an efficient pattern of parallel programming to utilize capabilities of both CPU and GPU in a heterogeneous system. The CUDA kernels run more than 3 times faster than the OpenMP parallelized ones using 12 cores (threads). Based on the GPU-only version, the hybrid CPU-GPU program further improves the whole application's performance by 30% on the average.

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    9
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
9
Average
Top 10%
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!