Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ IEEE Accessarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
IEEE Access
Article . 2020 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
IEEE Access
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
IEEE Access
Article . 2020
Data sources: DOAJ
DBLP
Article
Data sources: DBLP
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Hyperband Tuned Deep Neural Network With Well Posed Stacked Sparse AutoEncoder for Detection of DDoS Attacks in Cloud

Authors: Aanshi Bhardwaj; Veenu Mangat; Renu Vig;

Hyperband Tuned Deep Neural Network With Well Posed Stacked Sparse AutoEncoder for Detection of DDoS Attacks in Cloud

Abstract

Cloud computing has very attractive features like elastic, on demand and fully managed computer system resources and services. However, due to its distributed and dynamic nature as well as vulnerabilities in virtualization implementation, the cloud environment is prone to various cyber-attacks and security issues related to cloud model. Some of them are inability to access data coming to and from cloud service, theft and misuse of data hosted, no control over sensitive data access, advance threats like malware injection attack, wrapping attacks, virtual machine escape, distributed denial of service attack (DDoS) etc. DDoS is one of the notorious attack. Despite a number of available potential solutions for the detection of DDoS attacks, the increasing frequency and potency of recent attacks and the constantly evolving attack vectors, necessitate the development of improved detection approaches. This article proposes a novel architecture that combines a well posed stacked sparse AutoEncoder (AE) for feature learning with a Deep Neural Network (DNN) for classification of network traffic into benign traffic and DDoS attack traffic. AE and DNN are optimized for detection of DDoS attacks by tuning the parameters using appropriately designed techniques. The improvements suggested in this article lead to low reconstruction error, prevent exploding and vanishing gradients, and lead to smaller network which avoids overfitting. A comparative analysis of the proposed approach with ten state-of-the-art approaches using performance metrics-detection accuracy, precision, recall and F1-Score, has been conducted. Experiments have been performed on CICIDS2017 and NSL-KDD standard datasets for validation. Proposed approach outperforms existing approaches over the NSL-KDD dataset and yields competitive results over the CICIDS2017 dataset.

Keywords

distributed denial of service attack, intrusion detection, Machine learning, cloud computing, Electrical engineering. Electronics. Nuclear engineering, artificial neural network, TK1-9971

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    83
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
83
Top 1%
Top 10%
Top 1%
gold