Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ International Journa...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
International Journal of Computing
Article
License: CC BY
Data sources: UnpayWall
International Journal of Computing
Article . 2019 . Peer-reviewed
Data sources: Crossref
https://dx.doi.org/10.60692/xz...
Other literature type . 2019
Data sources: Datacite
https://dx.doi.org/10.60692/5v...
Other literature type . 2019
Data sources: Datacite
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

IMPLEMENTING BI-TEMPORAL PROPERTIES INTO VARIOUS NOSQL DATABASE CATEGORIES

تنفيذ خصائص ثنائية مؤقتة في فئات قاعدة بيانات NOSQL المختلفة
Authors: Mohammed Eshtay; Azzam Sleit; Monther Aldwairi;

IMPLEMENTING BI-TEMPORAL PROPERTIES INTO VARIOUS NOSQL DATABASE CATEGORIES

Abstract

NoSQL database systems have emerged and developed at an accelerating rate in the last years. Attractive properties such as scalability and performance, which are needed by many applications today, contributed to their increasing popularity. Time is very important aspect in many applications. Many NoSQL database systems do not offer built in management for temporal properties. In this paper, we discuss how we can embed temporal properties in NoSQL databases. We review and differentiate between the most popular NoSQL stores. Moreover, we propose various solutions to modify data models for embedding bitemporal properties in two of the most popular categories of NoSQL databases (Key-value stores and Column stores). In addition, we give examples of how to represent bitemporal properties using Redis Key-value store and Cassandra column oriented store. This work can be used as basis for designing and implementing temporal operators and temporal data management in NoSQL databases.

Keywords

FOS: Computer and information sciences, Data Stream Management Systems and Techniques, Temporal database, Computer Networks and Communications, Trajectory Data Mining and Analysis, Column-oriented Database Systems, Cloud Computing and Big Data Technologies, Social psychology, Database, Computer security, Psychology, Key (lock), Relational Database Systems, Scalability, NoSQL, Computer science, FOS: Psychology, Popularity, Computer Science, Physical Sciences, Signal Processing, Information Systems

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    4
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
4
Average
Average
Average
hybrid