
In this paper we present a "State-Based Multi-Parameter Probability Estimation" (SBMP) for Context-Based Adaptive Binary Arithmetic Coding (CABAC) which employs a two hypotheses probability estimator based on exponentially weighted moving averages. It uses a logarithmic state representation and a single subsampled transition table with only 32 elements for the probability update. This reduces the memory requirements virtually without affecting the compression efficiency, compared to corresponding approaches that use a linear state representation and a computation-based probability update. The proposed scheme is based on simple operations like table look-ups and additions. Compared to the state-of-the-art probability estimator of the video compression standard H.265/HEVC, the compression efficiency is increased by up to 1 % Bjontegaard-Delta bit rate (BD rate) when applied to draft 2 of the Versatile Video Coding (VVC) standard. Furthermore, SBMP was recently adopted to working draft 2 of the MPEG-7 part 17 standard for compression of neural networks for multimedia content description and analysis.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 8 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
