Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao METRONarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
METRON
Article . 2025 . Peer-reviewed
License: Springer Nature TDM
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Empirical Bayes methods in high dimensions: a survey and ongoing debates

Authors: Rizzelli, Stefano;

Empirical Bayes methods in high dimensions: a survey and ongoing debates

Abstract

Bayesian inference has as its starting point the specification of a prior distribution on the (possibly infinite-dimensional) parameters of the adopted statistical model. In some cases, a specification genuinely based on information available a priori and formalizing one’s level of uncertainty is difficult. This is especially true for the high-dimensional models in use for complex, recent applications of statistics and machine learning. In such circumstances, a popular practice, known as empirical Bayes, is to fix the value of the most relevant prior hyperparameters through the data. Notable examples are hyperparameters controlling sparsity in linear regression or sequence models; complexity in model selection or neural networks architecture; smoothness in nonparametric regression or density estimation. In spite of their popularity, empirical Bayesian methods still raise concerns of degeneracies and poor uncertainty quantification on the part of some scholars and practitioners, especially when set against fully Bayesian methods, whereby a hyperprior is specified on hyperparameters. The aim of this paper is to bring clarity by providing a critical review of recent advances in empirical Bayes methods for high-dimensional analysis. We offer an overview of their theoretical properties using the notion of oracle priors, illustrating with examples different facets of posterior adaptation. Finally, we discuss open issues, actively researched topics and future prospects.

Related Organizations
Keywords

Adaptive posterior distributions; Gaussian process; High-dimensional analysis; Marginal likelihood; Sparse sequence model

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!