Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Amsterdam UMC (VU Am...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Ear and Hearing
Article . 2018 . Peer-reviewed
Data sources: Crossref
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

The South African English Smartphone Digits-in-Noise Hearing Test: Effect of Age, Hearing Loss, and Speaking Competence

Authors: Potgieter, Jenni-Marí; Swanepoel, De Wet; Myburgh, Hermanus Carel; Smits, Cas;

The South African English Smartphone Digits-in-Noise Hearing Test: Effect of Age, Hearing Loss, and Speaking Competence

Abstract

Objectives: This study determined the effect of hearing loss and English-speaking competency on the South African English digits-in-noise hearing test to evaluate its suitability for use across native (N) and non-native (NN) speakers. Design: A prospective cross-sectional cohort study of N and NN English adults with and without sensorineural hearing loss compared pure-tone air conduction thresholds to the speech reception threshold (SRT) recorded with the smartphone digits-in-noise hearing test. A rating scale was used for NN English listeners’ self-reported competence in speaking English. This study consisted of 454 adult listeners (164 male, 290 female; range 16 to 90 years), of whom 337 listeners had a best ear four-frequency pure-tone average (4FPTA; 0.5, 1, 2, and 4 kHz) of ≤25 dB HL. Results: A linear regression model identified three predictors of the digits-in-noise SRT, namely, 4FPTA, age, and self-reported English-speaking competence. The NN group with poor self-reported English-speaking competence (≤5/10) performed significantly (p < 0.01) poorer than the N and NN (≥6/10) groups on the digits-in-noise test. Screening characteristics of the test improved with separate cutoff values depending on English-speaking competence for the N and NN groups (≥6/10) and NN group alone (≤5/10). Logistic regression models, which include age in the analysis, showed a further improvement in sensitivity and specificity for both groups (area under the receiver operating characteristic curve, 0.962 and 0.903, respectively). Conclusions: Self-reported English-speaking competence had a significant influence on the SRT obtained with the smartphone digits- in-noise test. A logistic regression approach considering SRT, self-reported English-speaking competence, and age as predictors of best ear 4FPTA >25 dB HL showed that the test can be used as an accurate hearing screening tool for N and NN English speakers. The smartphone digits-in-noise test, therefore, allows testing in a multilingual population familiar with English digits using dynamic cutoff values that can be chosen according to self-reported English-speaking competence and age.

Keywords

Adult, Male, Adolescent, Digit triplet test, Hearing Loss, Sensorineural, Screening test, Digits-in-noise, Cohort Studies, Speech reception threshold (SRT), Speech recognition abilities, United States (US), Validation, Humans, Mass Screening, Aged, Language, Aged, 80 and over, Hearing screening, Hearing Tests, Age Factors, Hearing loss, Middle Aged, 420, Telephone, Hearing test, Cross-Sectional Studies, Logistic Models, Speech-in-noise, Older adults, Case-Control Studies, Listeners, Linear Models, Audiometry, Pure-Tone, Female, Smartphone, Noise, Intelligibility

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    55
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
55
Top 10%
Top 10%
Top 1%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!