
doi: 10.1109/3468.508831
An optimal neuron evolution algorithm for the restoration of linearly distorted images is presented in this paper. The proposed algorithm is motivated by the symmetric positive-definite quadratic programming structure inherent in restoration. Theoretical analysis and experimental results show that the algorithm not only significantly increases the convergence rate of processing, but also produces good restoration results. In addition, the algorithm provides a genuine parallel processing structure which ensures computationally feasible spatial domain image restoration.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 5 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
