
Recent MLP-Mixer has a good ability to handle long-range dependencies, however, to have a good performance, one requires huge data and expensive infrastructures for the pre-training process. In this study, we proposed a novel model for nuclei image segmentation namely Axial Convolutional-MLP Mixer, by replacing the token mixer of MLP-Mixer with a new operator, Axial Convolutional Token Mix. Specifically, in the Axial Convolutional Token Mix, we inherited the idea of axial depthwise convolution to create a flexible receptive field. We also proposed a Long-range Attention module that uses dilated convolution to extend the convolutional kernel size, thereby addressing the issue of long-range dependencies. Experiments demonstrate that our model can achieve high results on small medical datasets, with Dice scores of 90.20% on the GlaS dataset, 80.43% on the MoNuSeg dataset, and without pre-training. The code will be available at https://github.com/thanhthu152/AC-MLP.
Technology, token mixing, nuclei segmentation, T, depthwise convolution, mlp-mixer
Technology, token mixing, nuclei segmentation, T, depthwise convolution, mlp-mixer
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
