Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ IEEE Accessarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
IEEE Access
Article . 2025 . Peer-reviewed
License: CC BY NC ND
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
IEEE Access
Article . 2025
Data sources: DOAJ
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Physics-Informed Denoising Model for Dynamic Data Recovery of Power Systems

Authors: Jian Li; Guoqiang Lu; Yongbin Li; Dongning Zhao; Huaiyuan Wang; Yucheng Ouyang;

Physics-Informed Denoising Model for Dynamic Data Recovery of Power Systems

Abstract

For a variety of applications within power systems, the precision of data acquisition is of paramount importance. However, the actual data may be corrupted by noise in the process of measurement or transmission, and the accuracy of dynamic security assessment (DSA) will be affected. In light of the poor interpretability exhibited by traditional machine learning (ML) methods in denoising, a physics-informed denoising model (PIDM) for dynamic data recovery is proposed. The differential equations of physical models in power systems are employed to guide the training of PIDM. They are transformed into physical constraints and subsequently incorporated into the loss function of stacked denoising autoencoder (SDAE) to cleanse noisy data. By integrating the powerful learning capabilities of ML with the rigorous constraints of physical laws, the noisy data recovered by PIDM can better satisfy the dynamic equations. Consequently, a more pronounced denoising effect can be achieved. The improvement of the PIDM over common ML-based models is explored when dealing with the noisy data with varying degrees of interference or those of unexpected faults. The effectiveness is validated through simulation results in IEEE 39-bus system and the East China power grid. The results show that this method can reduce the total mean square error (MSE) of the recovery of noisy data to at least 65.27% of that of the traditional methods under the same conditions. In addition to demonstrating superior denoising performance, the generalization capability under diverse noise conditions is also deemed excellent.

Related Organizations
Keywords

denoising and physics-informed method, Electrical engineering. Electronics. Nuclear engineering, stacked denoising auto-encoder, Data recovery, TK1-9971

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
gold