Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ IEEE Accessarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
IEEE Access
Article . 2024 . Peer-reviewed
License: CC BY NC ND
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
IEEE Access
Article . 2024
Data sources: DOAJ
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Universal High-Throughput and Low-Complexity LDPC Decoder for Laser Communications

Authors: Jing Kang; Junshe An; Yan Zhu;

Universal High-Throughput and Low-Complexity LDPC Decoder for Laser Communications

Abstract

To address the challenges posed by propagation channel impairments and to meet the high data rate requirements of laser communications, this study introduces a pioneering low-density parity-check (LDPC) decoder characterized by its high throughput and low complexity. The unique design of this decoder, based on an inter-frame pipeline and intra-frame parallel (IFPP-IFP) scheme, is specifically tailored to maximize the efficiency of processing units, leading to a substantial increase in decoding throughput. The implementation of IFPP is realized through a novel full-overlap message passing (FOMP) scheme and a dynamic address access (DAA) algorithm, distinguishing it from current solutions. Additionally, the decoder employs a message packing strategy and low-complexity data alignment units to effectively achieve IFP. Compared to existing solutions, our hardware implementation on the Xilinx XCKU060 FPGA demonstrates significant progress. The decoder achieves a decoding throughput of 2.67 Gb/s at 10 iterations and 350MHz. Remarkably, when five decoders are used on a single FPGA device, the throughput soars to 13.3 Gb/s, outperforming state-of-the-art designs by 1.3 times and concurrently reducing resource consumption by half. This combination of resource efficiency and enhanced throughput highlights the innovative and superior nature of our proposed approach.

Related Organizations
Keywords

laser communications, LDPC decoder, low-complexity, Electrical engineering. Electronics. Nuclear engineering, high-throughput, FPGA, TK1-9971

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Average
Average
Average
gold