
Electrical energy losses are found in any part of the power system. In the power system, it is essential to minimize the real power loss in transmission lines. The voltage deviation at the load buses through controlling the reactive power flow is very important. This ensures the secured operation of power systems regarding voltage stability and the economics of the process due to loss minimization. In this paper, the Modified Artificial Bee Colony (MABC) algorithm is implemented to solve the power system's optimal reactive power flow problem. Generator bus voltages, transformer tap positions, and settings of switched shunt of compensators are used as decision variables to control the reactive power flow. These control variable values are adjusted for loss reduction. MABC algorithm is tested on the standard IEEE-30 bus test system. The results are compared with Firefly algorithm (FA) and Artificial Bee Colony (ABC) algorithm method to prove the effectiveness of the newest algorithm. The power loss results are quite productive, and the algorithm is the most efficient than the other methods such as ABC algorithm and FA algorithm. These results are produced by Matlab 2017b.
Modified Artificial Bee Colony Algorithm, Technology, Modified Artificial Bee Colony (MABC) algorithm, electrical energy, power loss, power system., T, MABC Algorithm, QA273-280, power loss, power system, T1-995, electrical energy, Probabilities. Mathematical statistics, Technology (General)
Modified Artificial Bee Colony Algorithm, Technology, Modified Artificial Bee Colony (MABC) algorithm, electrical energy, power loss, power system., T, MABC Algorithm, QA273-280, power loss, power system, T1-995, electrical energy, Probabilities. Mathematical statistics, Technology (General)
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
