
Developing multi-threaded graph algorithms, even when using the MTGL infrastructure, provides a number of challenges, including discovering appropriate levels of parallelism, preventing memory hot spotting, and eliminating accidental synchronization. In this paper, we have demonstrated that using the combination of Qthreads and MTGL with commodity processors enables the development and testing of algorithms without the expense and complexity of a Cray XMT. While achievable performance is lower for both the Opteron and Niagara platform, performance issues are similar. While we believe it is possible to port Qthreads to the Cray XMT, this work is still on-going. Therefore, porting work still must be done to move algorithm implementations between commodity processors and the XMT. Although it is likely that the Qthreads-version of an algorithm will not be as optimized as a natively implemented version of the algorithm, such a performance impact may be an acceptable trade-off for ease of implementation.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 22 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
