
arXiv: 1909.04802
In this paper, we propose a novel variable-rate learned image compression framework with a conditional autoencoder. Previous learning-based image compression methods mostly require training separate networks for different compression rates so they can yield compressed images of varying quality. In contrast, we train and deploy only one variable-rate image compression network implemented with a conditional autoencoder. We provide two rate control parameters, i.e., the Lagrange multiplier and the quantization bin size, which are given as conditioning variables to the network. Coarse rate adaptation to a target is performed by changing the Lagrange multiplier, while the rate can be further fine-tuned by adjusting the bin size used in quantizing the encoded representation. Our experimental results show that the proposed scheme provides a better rate-distortion trade-off than the traditional variable-rate image compression codecs such as JPEG2000 and BPG. Our model also shows comparable and sometimes better performance than the state-of-the-art learned image compression models that deploy multiple networks trained for varying rates.
ICCV 2019
FOS: Computer and information sciences, Computer Vision and Pattern Recognition (cs.CV), Image and Video Processing (eess.IV), Computer Science - Computer Vision and Pattern Recognition, FOS: Electrical engineering, electronic engineering, information engineering, Electrical Engineering and Systems Science - Image and Video Processing
FOS: Computer and information sciences, Computer Vision and Pattern Recognition (cs.CV), Image and Video Processing (eess.IV), Computer Science - Computer Vision and Pattern Recognition, FOS: Electrical engineering, electronic engineering, information engineering, Electrical Engineering and Systems Science - Image and Video Processing
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 156 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 1% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 1% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 1% |
