Downloads provided by UsageCounts
handle: 2117/413828 , 2117/414733
Purpose Wall-modeled large eddy simulation (LES) is a practical tool for solving wall-bounded flows with less computational cost by avoiding the explicit resolution of the near-wall region. However, its use is limited in flows that have high non-equilibrium effects like separation or transition. This study aims to present a novel methodology of using high-fidelity data and machine learning (ML) techniques to capture these non-equilibrium effects. Design/methodology/approach A precursor to this methodology has already been tested in Radhakrishnan et al. (2021) for equilibrium flows using LES of channel flow data. In the current methodology, the high-fidelity data chosen for training includes direct numerical simulation of a double diffuser that has strong non-equilibrium flow regions, and LES of a channel flow. The ultimate purpose of the model is to distinguish between equilibrium and non-equilibrium regions, and to provide the appropriate wall shear stress. The ML system used for this study is gradient-boosted regression trees. Findings The authors show that the model can be trained to make accurate predictions for both equilibrium and non-equilibrium boundary layers. In example, the authors find that the model is very effective for corner flows and flows that involve relaminarization, while performing rather ineffectively at recirculation regions. Originality/value Data from relaminarization regions help the model to better understand such phenomenon and to provide an appropriate boundary condition based on that. This motivates the authors to continue the research in this direction by adding more non-equilibrium phenomena to the training data to capture recirculation as well.
Àrees temàtiques de la UPC::Enginyeria mecànica::Mecànica de fluids, Àrees temàtiques de la UPC::Informàtica::Aplicacions de la informàtica::Aplicacions informàtiques a la física i l‘enginyeria, Simulació per ordinador, Aprenentatge automàtic, Machine learning, Dinàmica de fluids computacional, Computational fluid dynamics, 004
Àrees temàtiques de la UPC::Enginyeria mecànica::Mecànica de fluids, Àrees temàtiques de la UPC::Informàtica::Aplicacions de la informàtica::Aplicacions informàtiques a la física i l‘enginyeria, Simulació per ordinador, Aprenentatge automàtic, Machine learning, Dinàmica de fluids computacional, Computational fluid dynamics, 004
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
| views | 88 | |
| downloads | 13 |

Views provided by UsageCounts
Downloads provided by UsageCounts